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ABSTRACT

Reliability is a fundamental concept of test construction. The most
common measure of reliability, coefficient alpha, is frequently used
without an understanding of its behavior. This article contributes
to the understanding of test reliability by demonstrating that ques-
tions which lower reliability are inconsistent with the bulk of the
test, being prone to test-taking tricks and guessing. These qualita-
tive characteristics, obtained from focus groups, provide possible
causes of lower reliability such as poorly written questions (e.g., the
correct answer looks different from the incorrect answers), ques-
tions where students must guess (e.g., the topic is too advanced),
and questions where recalling a definition is crucial. Quantitative
findings confirm that questions lower reliability when students
who answer correctly have lower overall scores than students who
answer incorrectly. This phenomenon is quantified by the “gap”
between these students’ overall scores, which is shown to be highly
correlated with other item metrics. An increasing number of con-
cept inventory tests are being developed to assess student learning
in engineering. Scores and student comments from the Statistics
Concept Inventory are used to make these judgments.

Keywords: concept inventory, statistics, test reliability

1. INTRODUCTION

Assessment plays a prominent role in the maturing field of
Engineering Education (Special Report, Journal of Engineering
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Education, 2006). The focus on assessment is in part driven by
ABET engineering accreditation changes, which focus on
outcomes rather than fulfilling course requirements. In addition, em-
phasis is placed on assessment for a better understanding of learning
systems and mechanisms, as well as diversity and inclusiveness (Spe-
cial Report, Journal of Engineering Education, 2006). Heeding calls
for the field to become more inter-disciplinary (Fortenberry, 2006)
and rigorous (Streveler and Smith, 2006), an exposition on standard
methods in educational research is apropos, benefiting both developers
and users of assessment tools. This article sheds light on test reliability
in a practical manner such that it can be understood and applied by
those with little knowledge of psychometrics.

The concept of reliability is a cornerstone of test development
and analysis. Nonetheless, a review of 220 articles from 22 educa-
tional research journals found that 46 percent of articles did not re-
port any reliability evidence (Whittington, 1998). Reliability, anal-
ogous to precision, is inversely related to measurement error, which
results from inconsistent response patterns and limits the generaliz-
ability of results from sample to population. Measurement error is a
random phenomenon, as opposed to systematic error which can be
controlled once identified (American Educational Research Asso-
ciation, 1999). Moreover, reliability is a property of the scores and
not the test itself. Thus, it is advocated that researchers report relia-
bility estimates for the data being analyzed rather than resort to pre-
viously reported estimates (Wilkinson, 1999).

There are several methods for assessing reliability, described in
many textbooks on psychological testing (e.g., Hogan, 2003; Kline,
2005). The most commonly cited are test-retest, in which answer
consistency is measured from one administration to the next; alter-
native forms, where subjects take two separate tests which are near-
ly identical in every aspect; and internal consistency, which mea-
sures the extent to which the test questions are highly correlated
with each other. This article investigates the last one in that list, in-
ternal consistency, as measured by coefficient alpha.

There have been several attempts in recent years to shed light on
coefficient alpha (Cortina, 1993; Streiner, 2003). While informa-
tive, these are often written from theoretical viewpoints. Little work
has been presented that details how alpha behaves for real test data
on a question-by-question basis. This article presents the back-
ground information for coefficient alpha and presents data from an
instrument, the Statistics Concept Inventory (Statistics Concept
Inventory, 2007; Stone et al., 2003), as an illustration of how alpha
behaves.

II. RELIABILITY BACKGROUND
Among the first to quantify test reliability were Kuder and
Richardson (1937). They comment that a reliability coefficient
based on test-retest will often result in a reliability that is spuriously

high due to material remembered on the second administration.
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Further, increasing the time between administrations is impractical
because subjects may gain knowledge in the interim. Therefore,
they shifted their focus to internal consistency as a measure of
reliability.

Kuder and Richardson focus on the concept of a split-half coef-
ficient, in which the test is split in two parts and a correlation is cal-
culated between those two parts. A test of length £ has (,Cy,) + 2
ways to be split in two; the term is divided by 2 to remove redun-
dancy. For a test with 10 items, there are 126 combinations. Each
split-half will result in a different reliability. There are potential
problems with deciding how to split the test and which is the most
appropriate split. Depending on the split, the calculated reliability
may be higher or lower than the “true” reliability. To overcome
these problems, the authors derive several equations which arrive at
unique values of the reliability coefficient.

The most often-cited result from Kuder and Richardson (KR)
(1937) is their equation 20, sometimes called KR-20 and later
dubbed “alpha” by Cronbach (1951). The KR-20 is so commonly
used because it assumes dichotomous scoring (i.e., O for incorrect,
1 for correct), which is how most achievement tests are scored. The
formula is given below in equation (1). The expression X p,g; can be
substituted in place of £ pg to give a more general result.

L
« k(“ kM) 1)

R

where: « is the reliability of the test (denoted 7, by Kuder and

Richardson)

% is the number of questions (often referred to as items)

on the test

o2 is the total score variance for the test

p:is the proportion of students who answer item 7 correctly

¢;1s the proportion of students who answer item 7 incor-

rectly

pgis the average p multiplied by the average ¢ for the
test, equivalent to assuming p is constant across all
items.

Equation (1) was generalized by Cronbach (1951) as shown in
equation (2), which allows any equally-weighted scoring method
for test items, including common Likert-style scales. Although
commonly referred to as Cronbach’s alpha or coefficient alpha, this
expression was derived independently by Guttman (1945) as well
and is sometimes referred to as Guttman-Cronbach alpha in psy-
chometric literature.

£ af—-EV,) £ ( EV,-)
= = 1- 2
“ ,é—l( o? k-1 o? @

where: ais Cronbach’s coefficient alpha (same meaning as 7,,)
#1s the number of questions (or items) on the test
3. V;is the sum of the individual item variances
0/ is the total score variance for the test (denoted as ¥, by
Cronbach)

For dichotomously scored items, V; reduces to p;g; and the
KR-20 equation is obtained. The derivation of this relationship is
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given in the Appendix. For Likert-style items seen in attitudinal
surveys, the variance retains the standard variance formula available
in statistics textbooks.

Statistical packages such as SPSS™ and SAS™ report “alpha if
item deleted” which shows how coefficient alpha would change if a
certain question were omitted. A “good” question will have a lower
“alpha if item deleted” because deleting that question will lower the
overall alpha. Each question’s effect on alpha is measured by the
“change in alpha,” found by subtracting “alpha if item deleted” from
the overall alpha, shown in equation (3). A “good” question will
have a lower “alpha if item deleted” because removing that question
would lower alpha; thus, the change in alpha will be positive.

Change in Alpha = Overall Alpha — Alpha if item deleted 3)

The simplest way to explain how a question will have a negative
effect on alpha (i.e., a higher “alpha if item deleted”) is to consider
Cronbach’s definition of alpha (equation 2). A “bad” question will
lower the overall test variance (07?). This happens when students
with low overall scores perform better on a question than students
with high overall scores. This “squishes” the class together (smaller
variance). When o2 decreases, the ratio X7,/ o? increases. This
ratio is then subtracted from 1, which lowers alpha.

For each item, the effect on total score variance is quantified by
subtracting the average total score of those who answer the item
incorrectly from the average total score of those who answer cor-
rectly. We call this value the “gap”; it is defined symbolically in
equation (4).

Gap;= X Comreet = % Incorrect “@
where: Gap; quantifies item 7’s effect on total variance (o %)
x refers to the mean total exam score
subscripts Correct and Incorrect refer to those students
who answer item 7 correct and incorrect,
respectively

The average inter-item correlation is also considered a measure
of a question’s reliability (Cortina, 1993). The inter-item correla-
tion is the Pearson correlation coefficient () computed with the 0-1
scores for a pair of items. The average inter-item correlation is each
item’s average inter-item correlation with the other -1 items. If a
question has negative or low positive (close to zero) inter-item cor-
relations, it does not “fit” with the rest of the questions. This will be
shown to relate which students answer a question correctly.

It is even possible for the overall alpha to be negative. For exam-
ple, if every student received the same total score on a test, 0,2 would
be zero. As the test variance approaches zero, the ratio 2. V;/ o
approaches infinity. When the calculation 1 — X V;/ o2 is
performed, alpha will approach negative infinity. (Note: X ¥; would
only be zero also if every question were answered the same, either
correctly or incorrectly, by every student.)

II1. ABOUT THE DATA

A. The Statistics Concepts Inventory

The illustrative data were obtained using the Statistics Concepts
Inventory (SCI). The SCI is a multiple choice instrument to assess
student understanding of fundamental statistics concepts. It is part
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of a larger interest to develop such instruments in a range of
engineering fields (Evans et al., 2003). The concept inventory
movement was spurred by the development and successful imple-
mentation of the Force Concept Inventory (FCI) (Halloun and
Hestenes, 1985; Hestenes, Wells, and Swackhamer, 1992). The
FCI was developed as a pre-post- test to identify student miscon-
ceptions of Newtonian force when entering a physics course and
check for gains upon completing the course. After many rounds of
testing, it was discovered that students gain the most conceptual
knowledge in interactive engagement courses, as opposed to tradi-
tional lectures (Hake, 1998).

The SCI was piloted during the Fall 2002 semester at the Uni-
versity of Oklahoma (OU) (Stone et al., 2003). The pilot version
was constructed by first identifying topics to include using a faculty
survey. Questions and multiple-choice answers were written by
searching statistics textbooks and educational literature for exam-
ples which covered these topics. The researchers also used personal
experience to develop additional questions.

The revision process included focus groups, analysis of correct
and incorrect answer distributions, and expert opinions. Several
new questions were generated from these processes. The data in this
article were gathered from the second version of the SCI, which had
33 questions and was administered during summer 2003. Two
sample questions from the test are shown in Figure 1.

B. Data Collection

The data in this study were gathered from four sources: (1) a sta-
tistics class in the College of Engineering at OU, with students hav-
ing a background of at least three semesters of Calculus; (2) a statis-
tics class in the Department of Mathematics at OU, primarily
consisting of engineering students with a similar background as (1);
(3) two groups of undergraduates participating in a summer research
program in OU’s School of Industrial Engineering, with back-
grounds ranging from no statistics experience to several semesters of
statistics; and (4) a statistics class in the College of Engineering at a
four-year university outside OU, with a similar background to (1)
and (2). An approved Institutional Review Board (IRB) protocol
was utilized with all sources of data. The number of students in each
group ranged from 14 to 39. Groups (1) and (2) took the instrument
as a pre- and post-test. The data in this article are from the post-test.

IV. THE BEHAVIOR OF ALPHA

A. A Macro View of Alpha

To understand the behavior of coefficient alpha, the compo-
nents of Cronbach’s formula (2) need to be analyzed first. Table 1
shows how alpha and its components vary across the four groups
used in this study.

a) Increase by 8°
b) Increase by 2°

Hy:psu,
Hy:u>u,

must be correct?

chance (correct)

Figure 1. Two items from the Statistics Concept Inventory.

1. The following are temperatures for a week in August: 94, 93, 98, 101, 98, 96, and 93.
By how much could the highest temperature increase without changing the median?

c) It can increase by any amount (correct)
d) It cannot increase without changing the median

2. A researcher performs a t-test to test the following hypotheses:

He rejects the null hypothesis and reports a p-value of 0.10. Which of the following

a) The test statistic fell within the rejection region at the significance level
b) The power of the test statistic used was 90%
¢) Assuming the null is true, there is a 10% possibility that the observed value is due to

d) The probability that the null hypothesis is not true is 0.10

Group n (students) k (items) Overall a ol SV; Range*
(1) OU Math 14 33 0.8587 38.06 6.37 21
(2) OU Engr 24 33 0.8100 31.16 6.68 15
(3) OU REU 27 33 0.5983 14.99 6.29 16
(4) Outside 39 33 0.5781 14.69 6.46 17

Table 1. Macro view of alpha.

"Range is the maximum score minus the minimum score.
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With the sum of individual variances (X7}) approximately con-

stant over the four groups, total test variance (0/?) is seen as the =0
most important component of alpha. For these groups, alpha varies
inversely with the number of students for this data, but this is a co- 0-15 ¢
incidence when viewing the magnitude of the changes (going S
down the chart, alpha decreases by 0.05 then 0.21, but 7 increases o 0101
by 10 then just 3). This pattern is not seen on data from subsequent é
administrations (refer to Table 4 near the end for more data). The £ 0.05
range is included as a simplified estimate of variance, but it lacks 2
explanatory power for alpha aside from the highest alpha having % 0.00 4
the highest range. 2
©

B. A Micro View of Alpha f% 005 1

The data used in this section are for the summer research
students (group (3) in section II1.B). They were selected for fur- -0.10 ' T '

-2 0 2 4 6

ther illustration because a focus group was conducted with over Score of Correct Minus Score of Incorrect (Gap)

half of these students, which allowed additional insight to be
gained about why questions may be performing poorly in terms Figure 3. Relationship between average inter-item correlation
of reliability. Because the data for the other three groups are sim- | andgap.

ilar, their presentation would not add to the discussion or change
the result except to reinforce the generalities of the data from
group (3).

The most direct way to explain alpha is to first compare the
change in alpha to the average inter-item correlation for each ques- 0.051 .
tion as shown in Figure 2. Because both axes represent measures of
a test’s reliability, a strong correlation is expected. It is also impor-
tant to show why certain questions have poor correlations. This is
presented in terms of average inter-item correlation vs. gap and
change in alpha vs. gap, shown in Figures 3 and 4, respectively.
Gap is calculated using total score rather than percentage. Using
percentage will change the scale of the x-axis, but the correlation
will not change. On this 33 question test, one point of gap corre-
sponds to 3 percent.

These plots continue to show strong relationships between the
variables. This matches the theoretical explanation presented in
section I1. Specifically, questions with a low or negative “gap” are -0.03
those which lower the variance of the overall test score. Low total
variance has been shown to be both mathematically and empiri-
cally the crucial component of coefficient alpha. Combined with Figure 4. Relationship between change in alpha and gap.

good)

0.03+

0.01+

-0.014

Change in Alpha (positive:

2 A 0 1 2 3 4 5 6
Score of Correct Minus Score of Incorrect (Gap)

what has been presented about the mathematical behavior of

alpha, these graphs imply that a question’s average inter-item
0.05 1 R 0.95 . correlation and, more directly, a question’s “gap” are plausible
g causes of a question behaving poorly as measured by “alpha if item
58? deleted.”
2 0.034 Another measure to quantify the effectiveness of a question is
'§ the discriminatory index (Kelley, 1939). This statistic is calculated
% by comparing the average score on the item of the top quartile stu-
§ 0014 dents to the bottom quartile students, where quartiles are defined by
< total exam score. (Example: 4th Q_60 percent of students correct,
f:3 1st Q 25 percent of students correct — For this item, Discriminatory
§ 0.01 index = 0.60 — 0.25 = 0.35) This statistic can also be shown to
© correlate highly with alpha if item deleted (Figure 5).
008 For this group of students, discriminatory index does not corre-

0.10 005 000 0.05 0.10 015 late as strongly as the “gap.” However, for two other groups ana-
lyzed, change in alpha correlates more strongly with discriminatory
) o . index than with “gap.” The lack of a consistent pattern limits further
Figure2. Relationship between change in alpha and average conclusions. Table 2 shows the correlations of alpha with the vari-

inter-item correlation. ous other measures presented previously for three courses.

Average Inter-Item Correlation
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0.054

0.03

0.01

-0.01

Change in Alpha (positive=good)

0.2

Discriminatory Index
Figure 5. Relationship between change in alpha and discriminatory index.

0.4 0.6 08

Course F Gap Disc. Index n
OU REU 0.977 0.905 0.854 27
OU Engr 0.991 0.877 0918 24
OU Math 0.973 0.889 0.935 14
Outside 0.982 0.970 0.905 38
Key: 7 average inter-item correlation
n students in each class
Table 2. Correlation of alpha-if-deleted with various item metrics.

C. Explanation Using Comments from Focus Groups

Over half of the students who took the test attended a focus
group where questions were discussed in detail. This allowed more
scrutiny on a question-by-question basis. Using the comments of
the focus groups, qualitative evidence can be obtained about what
makes a question “bad” in terms of alpha. Table 3 presents the 10
worst questions in terms of “alpha if item deleted” (marked by a
minus sign in Figure 5).

By evaluating these questions in such a manner, it is important
to remember that alpha is a property of this set of scores and not of
the test itself. The overall alpha and the “bad” questions will vary
from class to class. This could be partly due to chance but also could
indicate that one professor covered a topic whereas another did not
or that topics were covered in different manners with varying re-
sults. These variations bring to light the difficulty of defining a tar-
get population and finding a representative, consistent sample.
While the SCI has a target of statistical beginners, specifically those
who are engineering majors, the varied backgrounds and classroom
exposure make finding the precise target audience (i.e., those who
have been exposed to all concepts) impractical.

The comments in Table 3 indicate that questions on which stu-
dents guessed had a negative impact on alpha. This makes sense in
light of the other data presented because one expects a question on
which students guess to have a “gap” near zero. It is also likely that
these questions measure some attribute other than statistical rea-
soning, such as test-taking ability or memory. This is plausible
when compared with the effect that negatively correlated items have

January 2008

on alpha. These items do not appear to measure the same construct.
When this happens, inter-correlations among items tend to be
smaller. In other words, these questions are not internally consis-
tent with the rest of the test.

D. The Big Picture

The reliability analysis is conducted after each round of test
administration and used to guide revisions of the SCI. Table 4
shows the pre-test and post-test coefficient alpha for the combined
course data from each semester. Moving down the chart, the test
shows an increasing trend on the post-test, indicating the revisions
are successful. The pre-test consistently has an alpha in the 0.69
range for the past four semesters. Moving across the chart for each
semester, there is an increase in alpha from pre-test to post-test on
three of five occasions. One expects a pre-test to be subject to more
guessing and test-taking tricks than a post-test, which would ex-
plain the lower pre-test alphas. However, lack of a consistent pat-
tern (i.e., post-test having lower alpha on two of five administra-
tions) suggests there are additional sources which lower total test
variance, such as student knowledge becoming more standardized
as a result of instruction.

V. CONCLUSION

This paper provides insight into the behavior of one measure of
reliability, coefficient alpha, from a theoretical vantage and extends
this to data from a real test. High variance of scores is the key com-
ponent needed to attain a high coefficient alpha. Focus groups con-
ducted with students after taking the test corroborate the reliability
results by showing that there are several possible causes for ques-
tions that adversely affect alpha-guessing, the use of test-taking
skills, or when recalling a definition is necessary. In general, these
“bad” questions do not conform to the material on the test and have
high “alpha if item deleted” values, which are highly correlated with
average inter-item correlations and the discriminatory index.

Coefficient alpha can play a prominent role as a tool to aid in the
revision of questions and thus improving the overall reliability of a
test. The derived metric “alpha if item deleted” indicates which

Journal of Engineering Education 91

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



Change in
Rank  Question Topic Possible problem Student comments Alpha
33 Meaning of Too many symbols; Most students -0.0227
p-value definition recall guessed
32 Meaning of Definition recall; one Several students —-0.0208
p-value answer nearly guessed; strong
correct but wrong by distracter misled
one word others
31 68-95-99 rule for Requires People who got it -0.0170
normal remembering a rule correct say they just
remember the rule
30 Parent distribution  No useful comments n/a -0.0157
of a sample
29 Calculating Depends on attention They think it is easy -0.0134
standard deviation to detail as long as you read
carefully
28 t-distribution No useful comments n/a -0.0009
27 Sample vs. Poorly written: One student chose —-0.0067
population incorrect choices the correct answer
looked different for incorrect reasons
from correct choice
26 Design of Advanced topic Most students —0.0053
experiment guessed
25 Variability of a Students do not Most students -0.0038
histogram understand the discussed lack of
graphs understanding
24 Central tendency Term “central One mentioned -0.0022
tendency” possibly being confused by
confusing the term
Note: These questions ranked highest on alpha if deleted, therefore are considered the
“worst” questions relative to the remaining questions.
Table 3. Ten worst questions in terms of “alpha if item deleted.”
Post-Test
Pre-Test n k
Semester Alpha Alpha (students) (items) o’ YV: Range
Fall 2002 n/a 0.5957 174 32 15.11 6.39 22
Summer 2003 0.7434 0.6965 66 33 18.91 6.64 19
Fall 2003 0.6915 0.7031 241 34 18.10 6.63 21
Spring 2004 0.6979 0.7203 91 35 18.72 7.14 18
Fall 2004 0.6943 0.6692 107 37 16.76 7.85 19
Spring 2005 0.6852 0.7600 59 39 22.29 8.22 19
Table 4. Coefficient Alpha (with post-test components) for the SCI across six semesters.

questions are not conforming to the overall conceptual framework
of the test. The results presented here indicate that this metric can
be used to aide in item revision or deletion, especially when coupled
with focus group discussion. Coefficient alpha and “alpha if item

92 Journal of Engineering Education

deleted” should simply be considered tools in the test-writer’s
toolbox. Once reliability has been established, other judgments,
such as those based on validity, are still important in evaluating the
appropriateness of test items.
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APPENDIX: DERIVATION OF VARIANCE FOR DICHOTOMOUS SCORING

This relationship is derived using the basic definition of popula-
tion variance:

RV
ol = Vv, = —z(x,—[.l.)
n
where: x;are the individual observations (0 or 1)
( is the population mean (p; for each question)
n is the total number of observations (students)

For dichotomously scored data, the sum portion of the variance
equation can be broken down into the 0 and 1 scores:

ForOscoresonaquestion: Z(x; — u)> = (0 — p) gn = pl g

The term (0 — p;)? represents the fact that O is the value of each
observation (x;) and that the overall mean for each question is p;

The term gz accounts for summing all incorrect scores for that
question (the proportion incorrect multiplied by the total number).
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For the correct students, the same logic holds in calculating V7,
but now each x;is 1 and the total number of correct students is p; 7.

For 1 scores on same question: 2(x; — ) = (1 — p)pin =
g’pm

Combining the 0 and 1 portions and dividing by n yields the
total variance for an individual question (¥)):

_plgn + g pin

n

v

1

The next step is to divide out the #’s and re-arrange the
numerator:

Vi=pigdp: + q)

The term p; + ¢; is the sum of the proportion correct plus the
proportion incorrect. This must total 1. Therefore, the final result
for each question’s variance is:

Vi=piq;
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